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S U M M A R Y  

Traditionally, food microbiologists have relied on empirical studies to assess the microbiological safety of a particular food. However, these studies are 
time-consuming and, because only one or two inhibitory factors are usually dealt with, they are often of limited value. Today, the food industry is constantly 
developing new products with new formulations and alternative packaging strategies, resulting in a wide diversity of factors to be studied. It is therefore 
advantageous to develop mathematical models describing microbial growth which may be used to predict how changes in formulations or storage conditions 
may affect microbial growth. A brief overview of the basic concepts and steps of modeling procedures will be presented, along with some of the difficulties 
encountered therein. The safety of foods with respect to Clostridium botulinum depends on the probability (P) of growth or of toxigenesis, and P has been 
the dependent variable in several models. The development of these probability models will be discussed. 

I N T R O D U C T I O N  

Traditionally, food microbiologists have relied on empiri- 

cal studies to assess the microbiological safety of a particular 
food [2]. In these studies, the important  parameters  governing 

microbial growth such as temperature ,  pH,  salt level, and 

water activity (aw), were defined, and maximum and 

minimum limits permitt ing growth, such as shown in Table 
1, were established. To industry, there is little value in 

studies dealing with only one variable at a time. Most of 
these limits were determined with all other  parameters  
optimal,  which is very rarely the case with food products. 

TABLE 1 

Empirically defined limits for microbial growth 

Minimum Minimum Maximum Minimum 
temperature pH brine aw 
(~ (%) 

Clostridium botulinum 
Group I 10 4.6 10 0.94 
Group II 3.3 5.0 5 0.97 

Salmonella 5.2 4.0 8 0.95 
Listeria monocytogenes 3 5.6 10 - 

Correspondence to: K.L. Dodds, Health Protection Branch, Health 
Canada, Ottawa, Canada. 
Mention of brand or firm names does not constitute an endorsement 
by the US Department of Agriculture over others of a similar 
nature not mentioned. 

There is also increased awareness that preservative factors 

often act in combination,  giving food products microbiological 
protection at levels which individually would not be inhibi- 

tory. There  are many different factors which might influence 
microbial growth in a food product.  For  example,  temperature  

is a very important  factor, p H  is also very important ,  but 

so is the acidulant used to establish the pH. Similarly, aw is 

important,  as is the humectant  used. The presence of 
different preservatives,  the use of different atmospheres and 

the oxidation-reduction potential  (Eh) of the food all affect 

microbial growth. Today the food industry is constantly 
developing new products with new formulations and alterna- 

tive packaging strategies, resulting in a wide diversity of 
factors to be studied. Therefore ,  it is to industry's advantage 
to develop mathematical  models describing microbial growth 
which may be used to predict how changes in formulations 

or storage conditions may affect microbial growth. 

Introduction to modeling 

The steps involved in model ing seem very simple and 
straightforward. The first step, as for any experiment ,  is the 
planning. The  next step is data collection. Af te r  collecting 
the data, different models are fitted, and the model  which 
best describes the data is selected. Lastly, the model  should 
be validated using data not used to fit the model.  

All experiments should be carefully planned, and this is 
particularly true when model ing is the end-point.  The first 
requirement  is a very clear statement of the problem. For  
example,  what is the probability of toxin production by 

Clostridium botulinum in a certain product.  Next,  factors 
which are critical to the food product must be identified. 

These are the characteristics of a product which can be 
varied, and the variation in them can be controlled. For  
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example, in the case of shelf-stable cooked potatoes [1], 
both pH and aw were critical. These are the independent or 
predictor variables, and the response or predicted variable 
would be the probability of toxin production or the time 
until toxin production. The levels of the independent 
variables to be studied must be carefully determined. These 
levels are usually restricted by the food product being 
studied, and may only affect the food within a certain range. 
There would be no sense in studying potatoes with 10% salt 
because consumers would find this too salty. Choosing the 
experimental design and establishing the specific samples to 
be tested are often synonymous. Now the limitations are 
not only the food, but also available resources, especially 
personnel and facilities. If only two levels of a factor are 
studied, only a linear effect can be determined. If a response 
surface is desired, three or more levels are required. The 
predictive ability of any model is best within the range of 
conditions tested, and prediction outside the range is not 
advisable. In the example of the shelf-stable cooked potato, 
a combination of MPN methodology and a full factorial 
experiment [1] was used to study four levels of aw and five 
levels of pH. Samples were analyzed in triplicate at seven 
intervals. This meant a total of 1260 samples per experimental 
run. 

Fitting the experimental results to a model is where 
modeling really becomes interesting. Regression is the 
technique used to quantify the relationship between variables 
when the value of one variable is affected by changes in the 
values of other variables. In its simplest form, the relationship 
is linear and there is one dependent variable and one 
independent variable. This takes us back to high school 
math and the equation y = mx+ b. If there is more than 
one independent variable, multiple linear regression can be 
used. In modeling microbial growth in a closed system, we 
all know we are modeling a sigmoidal curve, the growth 
curve. There are several choices of equations for sigmoidal 
curves [12]. Logistic regression gives a symmetrical sigmoidal 
curve, so it is best for organisms growing under optimal 
conditions. The Stannard equation is also for a sigmoidal 
curve. The Gompertz curve is used for a situation where 
the relative growth rate is believed to decrease exponentially 
with time. The Ratkowsky [9] equatiori is predictive for 
growth dependent on temperature. 

Modeling work with C. botulinum - historical 
Modeling work with C. botulinurn presents difficulties 

not seen in many other situations. Often the detection of 
toxin is more important than growth and modeling microbial 
growth is much more straightforward. The response, growth, 
is fairly easily determined, and is continuous. However, in 
detecting toxin, there is an all or none response. There 
are problems with reproducibility, with variation in spore 
inoculum due to the medium in which the spores are 
produced, stored or heated, and their age, and whether or 
not to heat activate the spores, what inoculum level to use, 
how to inoculate, etc. This is why many investigators studying 
toxin production have determined the probability of toxin 
production, or have used logistic regression as the model. 

The safety of foods with respect to C. botulinum depends 
on the probability (P) of growth or of toxigenesis [4]. This 
approach was first used in the early 1920s to develop a food 
safety standard for low-acid canned foods. A mathematical 
relationship was developed between the thermal process and 
the probability of spore survival. Using a thermal process 
equivalent to a 12D cook would result in only a single can 
of 1012 cans with one spore per can containing a viable 
spore. Or, it would result in a one in 1012 chance for the 
survival of a single, initial spore. As Riemann [10] expressed 
it in 1966, the success of a preservation method with regard 
to C. botulinum depends on the probability that one spore 
will germinate, grow out, and give rise to toxin production 
in the preserved product. Assessment of the safe'cy of shelf 
stable canned cured meats requires the incorporation of 
several factors into the risk analysis of C. botulinum growth 
and toxigenesis. These products receive a relatively mild 
thermal process but are nonetheless stable due to other 
factors, principally the addition of nitrite, salt and other 
curing agents which inhibit surviving spores, and the low 
initial concentration of C. botulinum spores in the product. 
The desire to quantify these effects was expressed as early 
as 1973 by Pivnick and Petrasovits [8]. They presented an 
equation: preservation = destruction plus inhibition, and 
expressed each element on the basis of 1 log10. 

Roberts and his group summarized a vast amount of 
experimental work [11] and estimated the probability of 
botulinum toxin production in a model pork system as a 
function of salt, nitrite, isoascorbate, thermoprocess, pH 
and other factors. The probability (P) of toxigenesis was 
expressed in a single regression equation, P(%) = 
1/(1 + e -" ) ,  where /x is the predictor. The predictor is 
expressed by an equation which includes the individual terms 
of regression on factors, and their interactions which vary 
over the experimental range of each factor. Levels of factors 
and their interactions which minimize the probability of 
toxigenesis reduce the value of/x. 

Hauschild [3] assessed the botulism hazard from cured 
meat products by estimating the probability of a single 
spore to initiate growth and toxigenesis using the equation 
P = MPN spore outgrowing/MPN of spores inoculated. If 
inoculation was at a single level, the Halvorson and Ziegler 
equation, MPN = In (n/q), where n = the number of 
inoculated packs and q = the number of nontoxic packs 
after incubation was used. The value log lIP represents the 
number of log units of spores required for one spore to 
grow out and give rise to toxin under given conditions. Log 
1/P thus expresses decimal inhibition of spores, analogous 
to the D-value used in thermal processing. 

Modeling the effects of pH and aw on toxin production by 
C. botulinum 

Vacuum-packed cooked potatoes have been commercially 
available in Europe for several years, however potatoes 
provide a good substrate for botulinal growth and have 
been implicated in botulism outbreaks. A combination of 
factorially designed experiments and MPN methodology was 
used [1] to quantify individual and combined effects of aw, 



pH and storage time on toxin production. A preliminary 

experiment was done to determine critical levels of aw and 
pH, followed by a large experiment to develop the model 
and yet another experiment to validate the model. Different 
aw levels were obtained in cooked, mashed potatoes by 
adding solid NaC1. The different pH levels were obtained 
by adding ascorbic acid. The average difference between 
actual and target values was 0.001 for aw and 0.08 for pH, 
indicating that these variables were under tight control. 

For the factorial experiment, four levels of aw and five 
levels of pH with three inoculation levels were sampled over 
a period of 60 days. Analysis of variance showed that storage 
time, aw and pH all had highly significant effects on the 
probability of toxigenesis. Interaction effects between aw 
and pH, and aw and time were also highly significant, as 
was a quadratic term for aw. We used multiple linear 
regression performed by the general linear models procedure 
of SAS release 5.04 to develop models (Table 2). Only data 
for treatments showing at least one positive sample were 
included in the analysis and only terms which were statistically 
significant by the ANOVA were included. In terms of 
explaining variation, the best model is for the lag time 
before toxin is detected. Contour plots of the effect of aw 
and pH on log P and on lag time graphically illustrated 
the results (results not shown). A second fully factorial 
experiment was carried out to verify and test the predictive 
ability of the models. Only one treatment, at aw = 0.965 
and pH = 5.0, had an observed lag time shorter than the 
predicted lag time. These experiments demonstrated that 
both decreased aw and pH inhibited C. botulinum, something 
we knew qualitatively before, but had not quantified. 

Modeling the effects o f  MA P and irradiation on C. botulinum 
toxin production 

Toxin production in modified atmosphere packaged, 
irradiated fresh pork loin chops inoculated with C. botulinurn 
was studied [5-7]. Initially, the effects of three factors at 
three levels each were examined. One of the steps undertaken 
was to code the data. This has the advantage that the scale 
of units is then negated. For example, the scale of irradiation 
was only from 0 to 1, whereas for temperature it was from 

TABLE 2 

Regression equations relating storage time in days (d), lag time, 
aw, pH, and the probability (P) of toxigenesis of C. botulinum in 
cooked, vacuum-packed potatoes stored at 25 ~ [1] 

Parameter Equation r z 

Log P 

Lag time 

LOglo lag time 

= -577.62 - 6.96d + 1399.49 aw - 0.71 
41.97 pH - 840.64 aw 2 + 44.64 aw* pH 
+ 7.23 d*aw 

= -358455 + 738260 aw + 2421 pH 0.85 
- 380770 aw z - 32.81 pH 2 - 2196 aw* pH 

= 17870 - 35570 aw - 232.4 pH + 0.98 
17712 aw z + 227.5 aw* pH + 1.1 pH 2 
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5 to 25. Without coding, the factor coefficients would reflect 

this difference, but with coding, the coefficients reflect 
absolute differences. Chops were put in high barrier bags, 
inoculated with spores and modified atmosphere packaged, 
then irradiated. During these studies, we looked at different 
atmospheres. Initially, we looked at O2 seeing it as a possible 
inhibitor of C. botulinum. Initial 02 was 0, 10 or 20%, 
balance N2. Samples were stored at 5, 15 or 25 ~ and 
analyzed over 42 days (d). 

The gas composition of samples was monitored by 

headspace analysis. In all cases, where 02 was initially 
present, it decreased with time and CO2 increased. If samples 
were irradiated, both the rate and extent of the decrease in 
02 and increase in CO2 were decreased. As well, as 
the storage temperature decreased, the rates decreased. 
However, even at 5 ~ the Oz in samples initially packaged 
with 20% 02 decreased to less than 2% by 28 days and the 
CO2 increased to 18%. One thing these results demonstrated 
is that because the composition of the atmosphere in MAP 
pork changes, it is an independent variable over which we 
had poor control. 

As Table 3 shows, samples incubated at 25 ~ were toxic 
within 2 days, irrespective of atmosphere composition or 
irradiation dose. At 15 ~ treatments packaged with either 
10 or 20% 02 were toxic after 14 days, whether or not they 
had been irradiated. Treatments packaged in the absence of 
O2 showed an increased time until toxin production, to 21 
days if they were not irradiated, and to 43 days if they were 
irradiated at 1.0 kGy. From this table, it is obvious that 
temperature is the overriding independent variable affecting 
toxin production. From the statistical analysis, a stepwise 
regression, temperature is highly significant, P = 0.0001, 
and it explains most of the variation in results, -74%.  
However, initial 02 is also highly significant, and irradiation 
and final CO2 and several cross-products are also significant. 

TABLE3 

Effect of storage temperature, modified atmosphere and irradiation 
dose on toxin production by inoculated C. botulinum in fresh pork 
chops [7] 

Storage Initial Irradiation Earliest toxin 
temperature oxygen dose detection 
(~ (%) (kGy) (d) 

25 20 0.5 2 
10 0.0 2 
10 1.0 2 
0 0.5 2 

15 20 0.0 14 
20 1.0 14 
10 0.5 14 
0 0.0 21 
0 1.0 43 

5 20 0.5 > 44 
10 0.5 > 44 
10 1.0 > 44 
0 0.5 > 44 
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The second experiment  was designed to try and separate 

the effects of initial O2 and final CO2. These different 

treatments were used to give a continuum of final levels of 
CO2. Two kinds of gas absorbents,  one which absorbed only 

CO2 and one which absorbs CO2 and O2, were used. Again,  

irradiation was included as a factor. 

The absorbents created a difference in the atmospheres.  

The levels of CO2 reached in packages without an absorbent 

were much higher than in those treatments with an absorbent.  
Table 4 shows the results for toxin detection. Surprisingly, 

the first samples to become toxic were those packed with 

20% 02 with a CO2 absorbent.  The next samples to become 

toxic were those packed with 20% O~, with or without 20% 
CO2, without an absorbent  and non-irradiated. 

Statistical analysis showed that 02, CO2 and irradiation 
all contributed significantly to the model.  Much to our 

surprise, the presence of the absorbents was also significant. 

As with the last model,  final 02 was not significant but final 

CO2 was. These factors explained 83% of the variation seen. 

In a third experiment,  we looked at five levels of CO2 - 

15, 30, 45, 60 and 75%, balance N2 and irradiation. At  all 

levels, CO2 increased, but  the increase was decreased at 

higher initial levels. Results of the toxin assay are in Table 
5. The first t reatments to become toxic were those with low 
levels of CO2 which were not  irradiated. The time until 
toxin detection increased as the irradiation dose increased 

and as the level of initial CO2 increased. Statistical analysis 
showed the initial CO2 to be very significant, but it did not 

explain very much of the variation. 
Data from the preliminary challenge study were analyzed 

by regression using the R S R E G  procedure of SAS release 
5.18. We used the second order  polynomials thus generated 

to derive predictive models (Table 6). Using a model  relating 

time until toxin production to the initial 02 level, irradiation 

dose and storage temperature ,  surface response graphs were 

TABLE 4 

Effect of modified atmosphere, absorbent type and irradiation dose 
on toxin production by inoculated C. botulinum in fresh pork chops 
stored at 15 ~ [6] 

Initial Initial Gas Irradiation Earliest toxin 
O2 CO2 absorbed dose detection 
(%) (%) (kGy) (d) 

20 0 CO2 0.0 14 
20 0 CO2 1.0 19 
20 0 none 0.0 19 
20 20 none 0.0 21 
20 20 none 1.0 28 
0 0 none 0.0 28 
0 0 CO 2 Iv 0 2 0.0 28 

20 0 none 1.0 28 
0 20 none 1.0 28 
0 0 none 1.0 28 
0 0 CO 2 @ 0 2 1.0 28 
0 20 none 0.0 35 

TABLE 5 

Effect of irradiation dose and initial CO2 on toxin production by 
inoculated C. botulinum in fresh pork chops stored at 15 ~ [5] 

Irradiation dose Initial CO2 Earliest toxin detection 
(kGy) (%) (d) 

0.0 15 14 
30 14 
45 28 
6O 28 
75 21 

0.5 15 28 
30 14 
45 35 
60 28 
75 21 

1.0 15 21 
30 28 
45 28 
60 28 
75 35 

TABLE 6 

Regression equations relating initial 02, irradiation dose (lr), storage 
temperature (T), and storage time (d), to the time until toxin 
production (TTP) and the probability (P) of toxigenesis of C. 
botulinum in inoculated fresh pork chops 

Parameter Equation r 2 

TTP - 117.31 - 0.78 O2 - 2.75 lr - 8.95 T + 0.98 
0.04 022 - 0.92 O2*Ir + 16.0 lr 2 + 0.18 T 2 

= 25.67 2.05 O2 + 17.33 lr + 0.08 O2 z 0.92 
- 0.92 O2*lr 

= -7.6 + 0.0024 d + 0.00099 02 + 0.95 
0.523 lr + 0.299 T - 0.0002 d + 0.00036 d*O~ 
- 0.00013 022 - 0.014 d*lr - 0.0028 O2*lr 
-0.197 lr 2 + 0.0025 d*T + 0.00063 O2*T 
-0.016 lr*T - 0.005 T 2 

TTP ~ 

Log P 

"Effect of temperature removed. 

developed to graphically illustrate the effect of O2 level and 
irradiation dose on the t ime until toxin production at 15 ~ 

(results not shown). In all cases, the time until toxin 
production increased as the headspace O2 level decreased 
and the irradiation dose increased. As the temperature  
increased, the time until toxin production,  even for the least 
favorable conditions (0% O2/1 kGy),  decreased from 49 to 
27 days, indicating the importance of temperature .  A second 
model  was generated using only results at 15 ~ to relate 
time until toxin production to initial 02 and irradiation dose. 
It is interesting to note that irradiation had a much greater 
effect at low levels of O2. The earliest t ime predicted by 
the model  is 12.3 days and corresponds to an a tmosphere  
containing 14% 02 without irradiation. 



Another model was derived using the probability of 
toxigenesis as the response. Storage time and temperature 
were the most significant factors (P < 0.0001) affecting 
probability. Three-dimensional graphs were also developed 
using this model to illustrate the effects of initial O2 and 
irradiation dose on the probability of toxigenesis by a single 
spore at specific temperatures (results not shown). The 
probability of toxigenesis increased as the 02 concentration 
increased and as irradiation decreased. 

Three-dimensional graphs also illustrated the effects of 
storage time and temperature on the probability of toxigenesis 
in non-irradiated samples packaged without O2 (results not 
shown). The probability increased gradually as the storage 
time increased. However, there was a pronounced increase 
in probability as temperature increased, again indicating the 
importance of this factor. 

CONCLUSIONS 

Modeling is proving to be a very valuable technique from 
several points of view. The effects of different parameters 
on inhibition of microbial growth or toxin production can 
be quantified, giving much useful information. For example, 
results of the modeling done on the shelf stable potatoes 
[1] showed that there was a stronger inhibitory effect if aw 
was decreased as compared to pH. Modeling permits the 
interactive effects between different inhibitory parameters 
to be quantified. Finally, modeling gives the ability to change 
a formulation but still predict shelf life. Presently, the 
approach is somewhat limited because researchers normally 
deal with a specific food product or a specific model system 
and the applicability of models developed this way to other 
products is uncertain. However, as more data is generated 
and more models developed, we should be able to develop 
more general, robust models. 
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